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32	 Characterizing the Effects of 

Stimulus and Neural Variability 

on Perceptual Performance

wilson s. geisler, johannes burge, melchi m. michel, and anthony d. d’antona

abstract  Perceptual performance is limited by both external and 
internal factors. External factors include the physical variability of 
sensory stimuli and the inherent ambiguities that exist in the 
mapping between the properties of the environment and the prop-
erties of stimuli at the sensory organs (natural scene statistics). 
Internal factors include neural noise and nonrandom computa-
tional inefficiencies. External factors have not received the study 
they deserve, perhaps because they are difficult to measure and 
because methods for characterizing them have not been standard-
ized. This chapter describes some of the computational tools used 
to characterize the effects of external and internal variability on 
perceptual performance. These tools are based on concepts of 
Bayesian statistical decision theory and are illustrated for several 
basic natural tasks: grouping of contours across occlusions, estima-
tion of binocular disparity, and interpolation of missing pixel- 
luminance values.

Evolution pushes sensory and perceptual systems to perform 
efficiently in those tasks necessary for the organism to survive 
and reproduce. Nonetheless, even in an organism’s natural 
tasks, perceptual performance can never be perfect. Thus, 
to understand and predict perceptual performance it is 
crucial to characterize and understand the many factors that 
limit performance. These factors include the complexity and 
variability of the sensory stimuli, as well as many sources of 
internal variability, ranging from noise in sensory receptor 
responses, to noise in decision and memory circuits, to noise 
in motor neuron responses. The aim of this chapter is to 
describe some of the computational tools used to character-
ize and understand the effects of external (stimulus) and 
internal sources of variability on perceptual performance. 
These tools are based on principles of statistical decision and 
estimation theory. The computational tools described here 
are applicable to many perceptual systems, but the examples 
are drawn from the vision literature.

The most basic kinds of stimulus variability are irreducible 
sources of noise that occur in transmission of stimulus infor-
mation from the environment to the sensory organs. For 
example, the quantum nature of light causes the number of 
photopigment molecules activated in a photoreceptor to 
vary according to the Poisson probability distribution, even 

when the stimulus is nominally the same (de Vries, 1943; 
Hecht, Shlaer, & Pirenne, 1942). Although this source of 
noise is ubiquitous, there are only a few situations where it 
is the primary factor limiting performance. These situations 
consist primarily of simple detection or discrimination tasks 
where brief, spatially localized targets are presented in the 
visual periphery under dark-adapted conditions when the 
rod photoreceptors are most sensitive (Hecht et al., 1942).

In some laboratory tasks, it is possible to avoid all sources 
of stimulus noise, other than irreducible sources such as 
photon noise. In such tasks, performance is usually domi-
nated by neural variability, and by limitations in neural 
computations. Examples of such cases would be simple 
detection or discrimination tasks with fixed stimuli presented 
under light-adapted conditions (e.g., detection of a known 
pattern on a uniform gray background). In other laboratory 
tasks, and in most natural tasks, additional sources of stimu-
lus variability are also major factors. Examples of such cases 
would be detection of targets in pixel-noise backgrounds 
(Burgess, Wagner, Jennings, & Barlow, 1981), or estimation 
of physical properties in the environment such as the depth, 
shape, and reflectance of object surfaces (e.g., see Geisler, 
2011; Kersten, Mamassian, & Yuille, 2004).

Most perceptual tasks can be regarded as decision making 
in the presence of random variability, and hence an appro-
priate theoretical framework for analyzing perceptual per-
formance is Bayesian statistical decision theory (e.g., see 
Geisler, 2011; Kersten et al., 2004; Knill & Richards, 1996). 
In what follows, we sketch the general Bayesian framework 
and then discuss several special cases, starting with a discus-
sion of simple detection and discrimination tasks and ending 
with discussion of optimal estimation in natural scenes.

It is important to note that Bayesian statistical decision 
theory is used to analyze perceptual performance in two 
different ways. The first is to derive ideal-observer models, 
which are theoretical devices that perform a perceptual task 
optimally. An ideal observer usually contains no free param-
eters and is not meant to be a model of real observers. 
Rather, its purpose is (1) to help identify task-relevant 
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stimulus properties; (2) to describe how those properties 
should be used to perform the task of interest; (3) to provide 
a rigorous benchmark against which to compare real per-
ceptual systems; and (4) to suggest principled hypotheses and 
models for real performance.

The second way Bayesian statistical decision theory is 
used is as a framework for modeling perceptual perfor-
mance. When used in modeling perception, there are gener-
ally hypothesized internal (neural or information-processing) 
mechanisms, which have unknown parameters that are esti-
mated from perceptual performance data.

Bayesian statistical decision theory

Specifying the Task  The first step in using Bayesian sta-
tistical decision theory is to specify the task. This includes 
specifying the set of possible stimuli, the set of possible 
responses, and the goal of the task. Specifying the set of pos-
sible stimuli typically requires specifying (1) the ground-truth 
(distal) stimuli, which reflect the true task-relevant state of 
the world ω and (2) the proximal stimuli, which constitute 
the input data s. For example, in a simple detection-in-noise 
task, the true state of the world is that a target is either absent 
(ω = a) or present (ω = b) in a noise pattern, and the proximal 
stimulus is the specific pattern of pixels that would be  
imaged on the retina given perfect optics. In a typical depth- 
estimation task, the true state of the world is the physical 
distance of one surface patch from another, and the proxi-
mal stimulus is the specific pattern of pixels imaged on the 
two retinas, given perfect optics.

The set of possible responses can be quite complex, but 
in most perception experiments it is simple. For example, in 
the detection-in-noise task it would be one of two responses 
that indicate whether the observer judged the target to be 
absent (r = a) or present (r = b). In the depth-estimation task, 
the response might be an estimate of the number of centi-
meters in depth separating the surface patches.

Specifying the goal of a task requires specifying the costs 
and benefits (utility) of each possible response for each pos-
sible state of the world: γ (r, ω). If the goal in the detection-
in-noise task is to be as accurate as possible, then that can 
be represented by making the utility a positive value u when 
the response is correct γ (a, a) = γ (b, b) = u), and –u when the 
response is incorrect γ (a, b) = γ (b, a) = −u). As another 
example, if the goal is to maximize accuracy, while keeping 
false-positive responses (saying an absent target is present) at 
some low rate, then that can be represented by assigning a 
greater cost to false-positive than false-negative responses; 
that is, making γ (b, a) < γ (a, b). In the depth-estimation task 
there are many more possible combinations of response and 
state of the world, and hence many more possible goals 
(utility functions). A typical goal would be to minimize the 
mean squared error, which would be obtained by setting  

γ (r, ω) = −(r − ω)2. In an ideal-observer model, the utility 
function (goal) is fully specified. In a perceptual-performance 
model, the utility function is a part of the model and may 
have free parameters.

Ground Truth and Input Stimuli  The second step in 
using Bayesian statistical decision theory is to specify the 
statistical relationship between the states of the world and 
the stimulus. In the most common case, this involves specify-
ing the conditional probability of the different ground-truth 
states of the world given the input stimuli; this is the posterior 
probability distribution, p(ω|s). In practice, it is often con-
venient to first specify the stimulus likelihood distribution  
p(s|ω) for each possible state of the world and the prior 
probability distribution p(ω), and then use Bayes’ rule to 
compute the posterior probability distribution.

Input Data  In many applications of Bayesian statistical 
decision theory, there are properties of the perceptual system 
that are part of the specification of the input to the optimal 
Bayesian computations. These properties could be either 
known physical or neural properties that have no free 
parameters, or models of these properties that have free 
parameters. For example, these properties might include the 
optics of the eye, the sampling pattern of the photoreceptors, 
or the tuning and noise characteristics of retinal ganglion 
cells. The properties can be represented by a function gθ that 
maps the input stimulus s onto input data,

	 z z g s= ( )q , 	 (1)

where θ represents any free parameters. In other words, this 
constraint function incorporates the effects of known or 
assumed properties, and its output is the input data to the 
Bayesian analysis.

Bayes Optimal Response  Once the task, input data, and 
posterior distributions are specified, it is possible to write 
down an expression for the optimal response. Namely, one 
should pick the response that maximizes the utility (mini-
mizes cost), averaged over the posterior probability of the 
possible states of the world, given the input data:1

	 r z r z
r

opt p( ) = ( ) ( )





∑arg max , .γ w w
w

	 (2)

Note that z reduces to s in the case where the input data 
are the input stimuli. We define the “ideal observer” for a 
given task and constraint function to be the observer that 
makes responses according to Eq. 2.

1Note that arg max [f (x)] is the value of x (the argument) for which 
f (x) reaches its maximum value.
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In what follows, we first consider identification tasks (of 
which detection and discrimination are special cases), then 
estimation tasks, and finally make some general points about 
the relative importance of external and internal factors.

Identification tasks

In an identification task, the observer is required to identify 
which of n possible stimulus categories was presented on a 
trial. The special cases where there are only two possible 
categories of stimuli are usually referred to as detection or 
discrimination tasks.

In the classic yes-no task, the observer is presented on 
each trial with one of two randomly chosen stimuli (a or b). 
The observer is required to report whether the stimulus was 
a or b. Here we will regard a as the reference stimulus, and 
b as the reference plus signal. The typical goal is to maximize 
accuracy. In another variant, there are monetary costs and 
benefits associated with the different stimulus-response out-
comes, and the goal is to maximize monetary gain. In the 
two-alternative forced choice (2AFC) task, the observer is 
presented on each trial both stimuli, a and b, either in two 

temporal intervals or two spatial locations. The temporal or 
spatial order is randomized, and the observer is required to 
report whether stimulus a or b was in the first location or 
interval. Although the yes-no task is more representative of 
real-world tasks, the 2AFC task is more common in labora-
tory experiments, because performance tends to be better 
and response biases smaller than in the yes-no task.

Signal-Detection Theory  Signal-detection theory is a 
special case of Bayesian statistical decision theory that was 
developed to interpret the behavioral data in detection and 
discrimination experiments (Green & Swets, 1966; Tanner 
& Swets, 1954). The first key assumption of signal-detection 
theory is that on each trial the perceptual system produces 
a response that is represented by a value of a decision vari-
able ψ. On trials where the stimulus is a, the random values 
of ψ are described by one probability distribution, p(ψ|a), 
whereas on trials where the stimulus is b, the random values 
of ψ are described by another probability distribution, p(ψ|b) 
(see figure 32.1A). The second key assumption is that the 
observer’s responses are selected by placing a criterion β 
along the decision variable axis; if the value of ψ exceeds the 

Figure 32.1  Detection and discrimination. (A) The assumptions 
of signal-detection theory. (B) The receiver operating characteristic 
for the distributions in A. (C) Samples from hypothetical Gaussian 
likelihood distributions for the two stimulus categories in a yes-no 
detection task. The log of the ratio of these two likelihood distribu-
tions at any point is the decision variable in A; i.e., Ψ = log[p(z1, 
z2|b)/p(z1, z2|a)]. The solid and dashed contours correspond to the 
two criteria in A. (D) Three parameters describing the possible 

geometrical relationships between two contour elements. (E) 
Samples of geometrical relationships for pairs of contour elements 
belonging to the same physical contour (blue symbols) and belong-
ing to different physical contours (red symbols), for a particular 
distance between the elements. The black curve shows the optimal 
decision bound given equal prior probabilities. (Data from Geisler 
& Perry, 2009.) (See color plate 28.)
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criterion, then the response is b; if it falls below the criterion, 
the response is a. Two potential criteria are shown in figure 
32.1A (i.e., the solid and dashed vertical lines).

There are four possible stimulus-response outcomes in  
the yes-no task: responding b when the stimulus is b (hit); 
responding b when the stimulus is a (false alarm); responding 
a when the stimulus is a (correct rejection); and responding 
a when the stimulus is b (miss). The proportions of trials that 
are hits and misses must sum to 1.0, and proportions that 
are false alarms and correct rejections must sum to 1.0; thus, 
the data can be summarized by the proportions of hits and 
false alarms. As is clear from figure 32.1A, these two stimu-
lus-response outcomes are interpreted in signal-detection 
theory as the areas under the two probability distributions 
to the right of the criterion. The number of standard devia-
tions separating the means of the two distributions represents 
the observer’s sensitivity, and is called d′ (d-prime). The 
bigger the value of d′, the greater the potential accuracy of 
the observer; however, actual performance will also depend 
on where the criterion is placed.

An important feature of signal-detection theory is that it 
allows estimation of both the sensitivity and the criterion 
from the proportion of hits and false alarms. For example, 
if the probability distributions are assumed to be Gaussian 
and of equal variance, then d′ = Φ−1(ph) − Φ−1(pfa) and 
β = Φ−1(1 − pfa) − d′/2, where Φ is the cumulative standard 
normal integral function. These formulas are useful because 
observers can differ in task performance due to differences 
in the criterion, even when they are equally sensitive, or vice 
versa. Once the value of d′ is determined, it is also possible 
to calculate what would be the performance of the observer 
if the decision criterion were placed at some other location 
(e.g., the optimal location) using the formulas ph = Φ(d′/2 − β) 
and pf = Φ(−d′/2 − β).

The same logic and equations above hold for the 2AFC 
task; however, the colorful names hits and false alarms are 
reserved for the yes-no task. Also, if the responses to the  
two stimuli are statistically independent, then signal- 
detection theory predicts d′ in the 2AFC task to be √2 larger 
than in the yes-no task, for the same stimuli (Green & Swets, 
1966).

Receiver Operating Characteristic Analysis  The 
effect on performance of changes in the decision criterion, 
for a given level of sensitivity, can be represented with the 
receiver operating characteristic (ROC), which plots the 
proportion of hits as a function of the proportion of false 
alarms (figure 32.1B). Note that in this plot the value of the 
decision criterion is implicit; the ROC shows only the locus 
of hit and false alarm rates for all values of the criterion. 
The shape of the ROC depends on the shapes of the  
probability distributions; the ROCs plotted in figure 32.1B 
are for the distributions in figure 32.1A. The solid and open 

symbols in figure 32.1B show points on the ROC curve cor-
responding to the solid and dashed criteria, respectively, in 
figure 32.1A.

The assumptions of signal-detection theory can be tested 
in part by inducing the observer to adopt different decision 
criteria and then seeing if the observer’s hit and false alarm 
rates fall on the ROC predicted for the measured value of 
d′. Typically, different decision criteria are induced by 
varying the relative probability of stimulus a and b, varying 
the monetary payoffs for the different kinds of correct and 
error responses, varying the instructions to observer, or by 
asking the observer to provide a confidence judgment along 
with each response (Green & Swets, 1966). Signal-detection 
theory predicts that in the 2AFC task the ROC curve should 
be symmetric about the negative diagonal, even when it is 
not predicted to be symmetric in the yes-no task (e.g., see 
Green & Swets, 1966).

If the probability distributions for the decision variable 
cross at just one point (as they do for the equal-variance 
Gaussian distributions), and if the two stimuli are equally 
probable, then the area under the ROC is the maximum 
percent correct, which is obtained when the criterion is 
placed where the probability distributions cross (Green & 
Swets, 1966). In neurophysiology experiments, the area 
under the ROC is frequently used to quantify the “discrimi-
nation information” transmitted by individual neurons (e.g., 
Britten, Shadlen, Newsome, & Movshon, 1992; Tolhurst, 
Movshon, & Dean, 1983). The typical procedure is to record 
the response of a neuron to multiple presentations of two 
stimuli, compute the hit and false alarm rate for each value 
of a criterion along the response axis, and finally compute 
the area under the resulting ROC. This calculation provides 
an estimate of the maximum percent correct that could be 
supported by that neuron alone in a yes-no task, assuming 
that all the relevant discrimination information is contained 
in the total spikes per trial (i.e., no information is in the 
temporal pattern of responses).

For an ideal observer in a yes-no task, the probability 
distributions for the optimal decision variable must cross at 
a single location (see later), and hence the area under the 
ROC is the maximum percent correct. However, in neuro-
physiology experiments the neural response (e.g., spike count 
or spike rate) is typically regarded as the decision variable. 
The neural response is not guaranteed to represent an 
optimal decision variable (i.e., a likelihood ratio; see below). 
Hence, the two probability distributions could cross at more 
than one location. In this case, the area under the ROC 
curve will not correspond to the maximum percent correct. 
A better procedure is to fit the ROC, assuming an appropri-
ate family of distributions (e.g., gamma distributions), 
compute percent correct, and then do a statistical analysis, 
for the family of distributions, to correct for bias in the accu-
racy estimates.
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Ideal Observer for Identification  If the goal in an iden-
tification task is to maximize the percentage of correct iden-
tifications, then Eq. 2 reduces to the maximum a posteriori 
(MAP) rule:

	 r p a p aopt
a

i i
i

= ( ) ( )[ ]arg max z 	 (3)

Further, in the case of just two categories of stimuli (a1 = 
a, a2 = b), Eq. 2 reduces to

	 respond if otherwise respondb
p b
p a

p a
p b

a
z
z

( )
( )

>
( )
( )

; , .	 (4)

The left side of the inequality is the likelihood ratio, and the 
right side is the prior-probability ratio (often called the “prior 
odds”). Figure 32.1C illustrates this decision rule for an 
example where the input data are two-dimensional, z = (z1, 
z2), and Gaussian, with different means and covariance 
matrices. The ellipses show iso-likelihood contours, and the 
symbols show random samples from the two Gaussians. 
Equation 4 says that if the two categories occur with equal 
probability, then the response should be b when the likeli-
hood ratio exceeds 1.0. The solid black curve shows the locus 
of points where the likelihood ratio equals 1.0, and thus any 
input z below and to the right of the solid curve should be 
assigned response b. If the ratio of the priors is greater than 
1.0, then the decision boundary should shift. For example, 
the dashed curve shows the locus of points where the likeli-
hood ratio is 44. If the ratio of the priors is 44, then any 
input z below and to the right of the dashed curve should 
be assigned response b. The same logic applies to input data 
of arbitrary dimensionality and to arbitrary likelihood distri-
butions. It also applies to arbitrary numbers of categories, 
except that the boundaries now define regions for each of 
the possible responses.

How is this analysis of optimal identification related to 
signal-detection theory? To see the connection, note that the 
ideal decision rule is the likelihood ratio (the left side of Eq. 
4). Furthermore, note that the specific decision is unchanged 
by any strictly monotonic transformation of the two sides  
of the inequality in Eq. 4. In other words, for an ideal 
observer, the decision axis can be any monotonic transfor-
mation of the likelihood ratio. For Gaussian (and many 
other) distributions, a useful monotonic transformation is  
the logarithm (although any monotonic transformation is 
valid). Applying this transformation to both sides of Eq. 4, 
we obtain the decision variable ψ = log[p(z|b)]/p(z|a) and 
the criterion β = log[p(a)/p(b)]. When the stimulus on a trial 
is from category a, then the decision variable will have a 
distribution p(ψ|a) (red curve in figure 32.1A). When the 
actual stimulus is b, then the decision variable will have a 
distribution p(ψ|b) (blue curve in figure 32.1A). Note that for 
the ideal observer’s decision variable, it is impossible for the 
two probability distributions on the decision axis to cross at 
more than one point.

We see, then, that signal-detection theory is consistent 
with ideal-observer theory. This fact provides one rationale 
for the assumptions of signal-detection theory. However, 
signal-detection theory is more general in that an observer’s 
decision variable need not be a monotonic transformation 
of the likelihood ratio, and the criterion need not be optimally 
placed. In other words, signal-detection theory assumes an 
arbitrary one-dimensional decision variable and criterion.

To obtain quantitative predictions for the ideal observer 
in an identification task, it is necessary to specify the prior 
probability of the different stimulus categories and the likeli-
hood of the input data for each of the categories. Specifying 
the likelihoods and priors can be very difficult. The most 
common approach is to constrain the stimuli so that it is 
practical to derive or compute the likelihoods and priors. 
One way of constraining stimuli is to create them by sam-
pling from probability distributions specified by the experi-
menter. This is what is done in many perception experiments. 
For example, stimulus a might be a sample of Gaussian 
noise, and stimulus b a sample of Gaussian noise with a fixed 
added target. In this case, the decision variable and the 
criterion can be easily computed, making it straightforward 
to calculate or simulate ideal performance (e.g., Burgess  
et al., 1981).

Working with natural stimuli is more difficult, because 
their statistical structure is complex and generally unknown. 
One approach is to restrict what aspects of the natural 
stimuli are presented in an experiment. By considering only 
certain aspects of natural stimuli, it can become practical to 
measure the relevant probability distributions and compute 
ideal-observer performance. For example, consider a task 
where the observer is presented with just two contour ele-
ments (short line segments) at the boundary of an occluding 
surface, and must decide whether the elements belong to the 
same or different physical contours (Geisler & Perry, 2009). 
For a given occluder width (distance), two parameters 
describe the geometrical relationship between two contour 
elements: the direction of one element from the other, φ, 
and the orientation difference between the two elements, θ 
(see figure 32.1D). The blue symbols in figure 32.1E show 
samples from the actual distribution in natural images of 
direction and orientation difference when the contour ele-
ments belong to the same contour; the red symbols show 
samples when the elements belong to different contours. The 
solid curve shows the ideal decision bound when the goal is 
to maximize accuracy. Specifically, the ideal observer should 
report that the contour elements are on the same contour if 
the direction and orientation difference fall inside the bound-
ary; otherwise, the observer should report that the elements 
are from different contours. The performance of this ideal 
observer can be determined by applying this decision rule 
to test stimuli that contain two contour elements (taken from 
natural scenes) separated by an occluder. These same test 
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stimuli can be presented to human observers. In this case, 
human and ideal performance is nearly identical, implying 
that the human visual system accurately applies the decision 
boundary in figure 32.1E (Geisler & Perry, 2009).

We reiterate that ideal observers are not meant to be 
models of real performance. Rather, they provide a rigorous 
benchmark against which to compare real performance,  
and a principled starting point for developing models for  
real performance. For example, the classic signal-detection 
model for interpreting performance in detection and dis-
crimination experiments is motivated by the computational 
principles of the ideal observer. In addition, there are many 
examples in the perception literature where human perfor-
mance is found to parallel that of the ideal observer, showing 
that modest modifications of ideal observers (or heuristic 
approximations to the ideal observer) can serve as plausible 
and testable models real performance (for a review, see 
Geisler, 2011).

Estimation Tasks  In estimation tasks, there is some physi-
cally ordered dimension along which stimuli fall, and the 
observer is required to estimate the value along that dimen-
sion. The distinction between estimation and identification 
is not a sharp one, because one can regard estimation as 
identification with a large number of categories. The primary 
distinction is captured in the utility (cost/benefit) function. 
Generally, in the estimation task, the closer the estimate to 
the true value, the better. On the other hand, in many iden-
tification tasks all errors are equally costly; for example, if 
the task is to identify a criminal from a police lineup of 
otherwise innocent people, then all errors would be equally 
bad. Estimation tasks are very common under natural condi-
tions, but in laboratory settings they are less common than 
identification tasks.

The typical method for measuring estimation perfor-
mance is similar to that for measuring discrimination per-
formance. On each trial, a variable test stimulus is presented, 
and the observer is required to respond whether it is greater 
or less than some standard along the stimulus dimension of 
interest (e.g., color, depth, size, shape, etc.). Often the stan-
dard is another stimulus, but in some tasks the standard may 
be an internal reference. For example, in a slant-estimation 
task, the observer may be required to respond whether a test 
stimulus is right-side-back from frontoparallel (an internal 
standard). Data are typically plotted as psychometric func-
tions, and the estimate is taken to be the point of subjective 
equality (PSE)—the value of the variable stimulus where the 
observer reports that the test is greater than the standard 
with probability 0.5.

Ideal observer for estimation  A typical goal in an estimation task 
is to minimize the mean squared error between the estimate 
and the true value. This is the MMSE estimate given by

	

ˆ arg min ˆ

.

ˆ
ω ω ω ω

ω ω ω
ω ω

opt p

p E

= −( ) ( )





= ( ) = ( )

∑
∑

2 z

z z
w

	 (5)

In other words, the optimal estimate is simply the mean of 
the posterior probability distribution. Using Bayes’s rule to 
expand p(ω|z) in Eq. 5, the optimal estimate can also be 
expressed in terms of the likelihood and prior probability 
distributions:

	 ˆ .ω ω
ω ω

ω ωω
opt

p z p

p z p
=

( ) ( )
( ) ( )∑∑

z

	 (6)

Although minimizing some measure of the deviation from 
the true value is the intuitive goal for most estimation tasks, 
it is not uncommon for researchers to consider the MAP 
estimate (which penalizes all errors equally; cf. Eq. 3):

	 ˆ arg max arg max .ω ω ω ω
ω ω

opt p p p= ( ) = ( ) ( )[ ]z z 	 (7)

The reason for this choice is that sometimes the MAP esti-
mate is easier to compute, and if the posterior distributions 
are unimodal and not skewed, then the MAP and MMSE 
estimates are the same.

As in identification experiments, the difficult step in gen-
erating ideal-observer predictions is specifying the likelihood 
and prior distributions (or, equivalently, the posterior distri-
butions). For both laboratory and natural stimuli, this gener-
ally requires constraining the stimuli in some way. Below, 
we briefly describe two approaches that can be applied to 
tasks with natural stimuli.

Both approaches begin by constraining the amount of 
data in the input. To be concrete, suppose that the task is to 
estimate some state of the world (e.g., depth) at each location 
in the retinal image. The input z to the visual system is the 
entire image, which for natural stimuli is far too big and 
complex to allow specification of the likelihood or posterior 
distributions. Thus, it is typical to restrict the input to some 
small neighborhood or context, c, over the location where 
the estimate is to be made. This is reasonable because, in 
many cases, image correlations drop rapidly with distance 
(e.g., Deriugin, 1956; Field, 1987). In addition, in experi-
ments on real observers it may be possible to use stimuli 
restricted to the local context so that the ideal observer is 
appropriate for the stimuli tested on real observers.

The first approach is to make an assumption about the 
parametric form of the likelihood distributions. A common 
(but sometimes unverified) assumption is that the likelihood 
distributions are Gaussian,

	 p gaussc cω ω ω( ) = ( ); , ,m Σ 	 (8)

where μω and Σω are a mean vector and covariance matrix 
that depend on the specific state of the world (e.g., depth). 
This assumption implies that the probability distribution of 
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the context vector p(c) is a mixture of Gaussian distributions 
with weights given by the prior probabilities, a form of 
Gaussian mixture model (GMM): p p pc c( ) = ∑ ( ) ( )ω ω ω . In 
applying this approach to natural stimuli, the mean vectors 
and covariance matrices can be measured (learned) from a 
large set of contexts taken from natural images, for each state 
of the world. Empirical measurements of natural stimuli also 
allow researchers to verify whether their assumptions about 
the parametric form of the likelihood are valid (e.g., Burge 
& Geisler, 2011, 2014). If the size of the context vector is n, 
then the number of parameters that must be estimated for 
each possible state of the world is n(n + 1)/2 + n. This number 
is small enough to make it practical to measure all param-
eters for moderate context sizes. Once the means and covari-
ance matrices are measured, Eqs. 6 or 7 can be used to 
compute the ideal observer’s estimates.

The second approach makes no assumptions about the 
parametric form of the likelihood or prior distributions, but 
instead makes the analysis tractable by considering only 
small context sizes (e.g., Geisler & Perry, 2011). One version 
of this approach, parallel conditional means (PCM), involves 
measuring separately the mean of the posterior probability 
distribution for all context values for two or more contexts 
in the input data (gray squares in figure 32.2A). These means 
can be measured directly by computing sample means from 
training data, and do not require measuring (or modeling) 
the posterior probability distributions. These means specify 
estimation functions that map context values into optimal 
(MMSE) estimates: ω̂ ω1 1= ( )E c , ω̂ ω2 2= ( )E c . Once these 

Figure 32.2  Simple nonparametric minimum mean squared error estimates. (A) Parallel conditional means. (B) Recursive conditional 
means.

functions are measured, the final estimate is obtained by 
combining the estimates, typically by weighting the estimates 
by their relative reliability (e.g., Oruc, Maloney, & Landy, 
2003). Another version of this approach, recursive condi-
tional means (RCM), involves first measuring the mean of 
the posterior probability distribution for one context c1 in 
the input data z (gray squares in the first box in figure 
32.2B). Again the optimal estimate is ω̂ ω1 1= ( )E c . The 
recursive step is to define a second-level context c2 that 
includes one or more values of the first-level estimates (gray 
squares in third box in figure 32.2B), and then directly 
measure the mean of the posterior distribution for all pos-
sible values of the variables in this second-level context. The 
result is a second estimation function that maps second-level 
context values into optimal estimates: ω̂ ω2 2= ( )E c . This 
process can be repeated to obtain a series of n estimation 
functions; the value of n is determined by when performance 
reaches asymptote. The final estimate is obtained by apply-
ing the n estimation functions sequentially.

Which version performs best depends on the particular 
task. Both versions require having enough training data to 
estimate the mean of ω or each possible pattern of context 
values. For example, if the values of the context variables 
range from 0 to 255, then the context size is limited to three 
or four variables, because more variables would require an 
impractical amount of training data. However, the context 
size does grow (in effect) at each step. In the recursive case, 
the effective context grows because the context for a higher-
level estimate contains estimates that were obtained using 
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the contexts at lower levels (in figure 32.2B, the context for 
the second estimate can effectively include the light gray 
pixels). Note that it is also possible to apply Gaussian mixture 
models recursively.

Another distinction between these two approaches is that 
the GMM observer is “generative,” in the sense that the 
GMM parameters specify the joint distribution of the context 
and true values. (The term “generative” refers to the fact 
that if the joint distribution is specified, then it is possible to 
generate random samples from the distribution.) On the 
other hand, the RCM observer is “discriminative,” in the 
sense that it provides optimal estimates, but does not specify 
the joint distribution of the context and true values (McLach-
lan, 1992; Vapnik, 1998). The distinction between genera-
tive and discriminative is separate from the distinction 
between parametric and nonparametric. For example, direct 
nonparametric measurements of higher-order moments 
beyond the conditional mean may allow generation of 
random samples from the joint distribution. Alternatively, 
parametric models such as multiple linear regression produce 
estimates, but cannot generate random samples from the 
joint distribution. In perceptual systems, a potential advan-
tage of representing the joint distribution is that it may be 
possible to switch utility/cost functions without needing to 
learn whole new estimation functions.

We illustrate the two approaches with two examples: (1) 
disparity estimation, which underlies binocular depth per-
ception, and (2) missing-pixel estimation, which is a simple 
form of image interpolation (amodal completion).

Disparity estimation  To illustrate the first approach, consider 
the task of estimating horizontal disparity from the images 
formed in the left and right eye when binocularly viewing a 
small patch of natural scene. In this example, the context 
consists of eight variables, where each variable is the dot 
product of a different, vertically oriented binocular receptive 
field with the retinal images in the two eyes. These eight 
receptive fields were found (by a separate analysis) to be the 
most useful vertical receptive fields for disparity estimation 
given the optics of human eyes and the properties of natural 
stereo images (Burge & Geisler, 2014). The symbols in figure 
32.3B show joint responses of the first two binocular units 
(figure 32.3A) to randomly selected contrast-normalized 
natural image patches, for a range of horizontal disparities 
(−15 to 15 minutes of arc). As can be seen, the likelihood 
distributions are roughly Gaussian in shape (solid curves are 
95% volume contours), with mean vectors that change little 
with disparity and covariance matrices that change rather 
dramatically. This pattern holds for all pairs of variables, 
and for disparities intermediate to those shown in figure 
32.3B, strongly suggesting that Eqs. 7 and 8 should give 
near-ideal performance. Figure 32.3C shows that the  
optimal estimates (for a separate set of test patches) are 

unbiased and that the confidence intervals grow with the 
magnitude of disparity. Figures 32.3D and 32.3E show, in 
agreement with human psychophysics, that the growth in 
the confidence interval is approximately exponential with 
disparity (Blakemore, 1970; McKee, Levi, & Bowne, 1990), 
and that the proportion of disparity sign confusions decreases 
rapidly at small disparities, is minimal at intermediate dis-
parities, and decreases gradually at large disparities (Landers 
& Cormack, 1997). Thus, an ideal (GMM) observer for 
disparity estimation in natural images shows that human 
performance tracks the information available in the retinal 
images and provides a principled starting point for develop-
ing models of human disparity estimation under natural 
conditions.

Missing-pixel estimation  To illustrate the second approach, 
consider the task of estimating the gray level of missing pixels 
in 8-bit (0-255 gray level) calibrated natural images 

Figure 32.3  Disparity estimation. (A) Two of the eight vertically 
oriented binocular receptive fields (filters) optimal for disparity 
estimation. (B) Likelihood distributions of first two filter responses 
for disparities ranging from –15 min to 15 min. Symbols show 
responses to individual natural image patches for two disparities. 
Contours indicate 95% of the volume of Gaussian distributions fit 
to the joint responses. (C) Estimation performance on random 
natural image test patches for an ideal Gaussian mixture model 
using all eight optimal filter responses. Symbols are mean estimates, 
and error bars represent 68% confidence intervals. (D) Confidence 
intervals of estimates as a function of disparity. (E) Proportion 
correct estimation of disparity sign (crossed vs. uncrossed) as a 
function of disparity. (From Burge & Geisler, 2014.)
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Figure 32.4  Missing-pixel estimation task. (A) Example test 
image (calibrated 8-bit gray scale). (B) Distribution of estimation 
errors (in gray-level) of the point of subject equality for three human 
observers on 62 test patches. (C) Distribution of psychometric func-
tion slopes (standard deviation values) obtained by fitting 

psychometric data with a cumulative Gaussian. (D) Estimation of 
error of a parallel conditional means (PCM) observer trained on 
natural images plotted as a function of the estimation error of three 
human observers, for 62 test patches. If PCM and human errors 
were identical, the points would fall on the positive diagonal.

(D’Antona, Perry, & Geisler, 2013; task modified from 
Kersten, 1987). The left side of figure 32.4A shows a large 
patch of natural image with a missing center pixel; the right 
side shows an enlargement of the center 5x5 neighborhood 
around the missing pixel. PCM (figure 32.2A) was applied 
using two contexts: the four pixels left and right of the center 
pixel, and the four pixels above and below the center pixel. 
From a large set of natural image training patches (on the 
order 1010), the mean of the center pixel is computed for 
each combination of the four context values. These condi-
tional means (which are a smooth function of the context 
values) were used to obtain two estimates that were then 
combined.

For test patches of natural image, the mean squared error 
of the estimates of the PCM observer is approximately 90 
(SD of error = 9 gray steps). Analysis shows that the most 
useful pixels for this task are the four neighboring horizontal 
and vertical pixels (other pixels provide much less informa-
tion), and hence the performance of the PCM observer is 
likely close to the true optimum (Geisler & Perry, 2011). The 
mean squared error of the estimates of the GMM observer 
that uses simultaneously the four pixels in the horizontal 
direction and the four pixels in vertical directions (8-dimen-
sional Gaussian distributions) is approximately 140. Thus, 
for this task the PCM observer is considerably closer to ideal.

The mean squared error of human estimates on exactly 
the same test patches is approximately 246 (figure 32.4C), 
and thus humans are well below optimal in this task. 
However, because of luminance gain control and center- 

surround mechanisms in the retina, the output of the retina 
is probably better described as a contrast image rather than 
a luminance image (a contrast image is obtained from a 
luminance image by subtracting and then dividing by the 
local mean luminance at each pixel location). Interestingly, 
humans match the performance of a PCM observer trained 
on contrast images. Figure 32.4D shows, for 62 representa-
tive test patches, the estimation error of the contrast PCM 
observer plotted against the human estimation error. The 
contrast PCM observer does a good job of predicting the 
specific errors made by humans for arbitrary natural image 
patches.

Relative influence of external and internal factors

Efficiency  An observer’s performance is generally limited 
by both external factors (variability and ambiguity of the 
inputs) and by internal factors (neural, decision, and motor 
noise, as well as nonrandom computational inefficiencies). 
For the purpose of estimating the relative influence of exter-
nal and internal factors, the combined effect of all the inter-
nal factors can be regarded as a level of internal noise, which 
can be estimated by calculating how much the external 
(stimulus) variability must be scaled up for the performance 
of the ideal observer to match that of the organism. This 
scale factor κ is closely related to the definition of efficiency, 
η in signal-detection theory: η = ′ ′d dreal ideal

2 2  (Tanner & 
Birdsall, 1958). In a detection task with a fixed signal in 
Gaussian noise, κ is simply the inverse of the efficiency 
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(κ = 1/η). As a more general example, consider an ideal 
observer in an identification task, where each category is 
represented by a Gaussian distribution. In this case, κ is the 
scale factor on the covariance matrices that brings the ideal 
performance down to real performance. If the external vari-
ability must be scaled by a factor of κ, then the effective 
internal variability equals κ − 1 times the external variability. 
In other words, if the value of κ is near 1.0, then the internal 
noise is near zero and external factors dominate perfor-
mance; if the value of κ is large, then internal factors domi-
nate performance.

Whether external or internal factors dominate perfor-
mance is highly task-dependent. For detection of targets in 
fixed backgrounds, the only external variability is photon 
noise (the ideal observer is limited only by the signal’s energy 
and photon noise) and the value of κ is large (typically 
greater than 10), showing that internal factors dominate 
(e.g., Geisler, 1989). For detection in high-contrast pixel 
noise, the values of κ can be quite a bit smaller (sometimes 
less than 2), showing that external factors dominate, or at 
least play a major role in limiting performance (e.g., Burgess 
et al., 1981).

For tasks involving natural stimuli, the variability of the 
stimuli is often high, and hence there are likely to be many 
cases where external factors dominate. An example is the 
task described earlier, where the observer is presented with 
two contour elements at the boundary of an occluding 
surface and must decide whether the elements belong to 
the same or different physical contours (figures 32.1D, E). 
The accuracy of the ideal observer in this task is 87% 
correct, and is entirely due to external (stimulus) variabil-
ity. Human performance under exactly the same condi-
tions is 83% correct. The value of κ necessary to degrade 
ideal to real performance is 1.5, and hence in this task 
human performance is dominated by external factors. In 
other words, the human visual system uses a decision rule 
that closely approximates the solid curve in figure 32.1E 
and hence has efficiently incorporated the statistics of 
natural contours.

Fixed-Stimulus and Across-Stimulus Variation in Per-
formance  Another important distinction is between the 
variations in behavioral response that occur when an 
observer is presented with the same fixed stimulus repeat-
edly, and the variations that occur across different stimuli. 
Fixed-stimulus variation must be entirely due to internal 
factors that are varying from presentation to presentation 
(e.g., sensory neural noise, decision noise, or motor noise). 
On the other hand, variation in response across stimuli must 
be due either to external factors or to nonrandom internal 
factors.

A method for separating the two types of variation in 
detection-in-noise tasks is the “frozen noise” experiment, 

where each noise background (or natural stimulus back-
ground) is repeated occasionally in the course of the experi-
ment. Fitting the subject’s responses with standard signal- 
detection models allows estimation of the relative variance 
of the two sources of variation. Furthermore, if the pixel-
based ideal observer for the task is known, then it is possible 
to separately estimate the effective variance due to external 
factors, nonrandom internal factors, and internal noise (e.g., 
see Swensson & Judy, 1996).

A related simple analysis for estimation experiments is to 
measure the fixed-stimulus variance from the slopes of the 
psychometric functions and the across-stimulus variance 
from the differences between the PSEs and the true values. 
For example, figure 32.4B shows the distribution of psycho-
metric function slopes in the pixel-estimation task. These 
slope values are standard deviations of the cumulative 
Gaussian distributions fitted to the psychometric data. If the 
human observers had no internal variability, they would 
make the same decision every time the same stimulus was 
presented, and the psychometric functions would be step 
functions. Thus, the fitted standard deviations estimate all 
the internal variability, which in this case is equivalent to a 
pixel noise standard deviation of 9.2 gray steps (variance = 
85). On the other hand, figure 32.4C shows the distribution 
of systematic errors (PSE errors). These errors are largely 
due to external factors or fixed (nonrandom) internal factors 
(the confidence intervals on the PSEs are quite small). The 
root mean squared PSE error is 15.7 gray steps (variance = 
246), which is substantially larger than the internal variabil-
ity. This result makes the important point that in many 
natural tasks performance is limited more by external factors 
and nonrandom internal inefficiencies than by neural, deci-
sion, and motor noise.

Conclusion

This chapter reviewed some tools that are useful for charac-
terizing the external and internal factors that limit percep-
tual performance. These tools are based on applying the 
concepts of Bayesian statistical decision theory to the analy-
sis of natural signals, neural responses, and behavioral 
responses. Application of the Bayesian approach to natural 
signals can identify task-relevant dimensions of information, 
provide principled hypotheses for neural mechanisms, and 
determine the limitations on perceptual performance 
imposed by external factors. Application of the Bayesian 
approach to neural responses can provide similar insight into 
task-relevant dimensions of neural information and can 
provide principled hypotheses for subsequent decoding. 
Application of Bayesian approaches to behavior can provide 
principled perceptual models and can be used to separate 
effects on performance due to sensitivity from those due to 
decision criteria.

1
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