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Although studies of visual search have repeatedly
demonstrated that visual clutter impairs search
performance in natural scenes, these studies have not
attempted to disentangle the effects of search set size
from those of clutter per se. Here, we investigate the
effect of natural image clutter on performance in an
overt search for categorical targets when the search set
size is controlled. Observers completed a search task
that required detecting and localizing common objects in
a set of natural images. The images were sorted into
high- and low-clutter conditions based on the clutter
metric by Bravo and Farid (2008). The search set size was
varied independently by fixing the number and positions
of potential targets across set size conditions within a
block of trials. Within each fixed set size condition,
search times increased as a function of increasing clutter,
suggesting that clutter degrades overt search
performance independently of set size.

Introduction

Interacting with the world involves, as frequent and
ubiquitous subtasks, the detection and localization of
objects in our visual environment. These subtasks are
called visual searches. One fundamental property
common to all visual searches is uncertainty regarding
the positions of target objects. This study examines the
properties of the visual environment and of the visual
system that contribute to this position uncertainty. In
particular, our goal is to investigate how visual clutter
affects performance when observers search natural
images for categorical targets.

Position uncertainty can be due to either extrinsic or
intrinsic sources. For example, an observer searching
an unfamiliar bookshelf for a particular book will
probably have some uncertainty about the location of
the book. In this case, (i.e., when the observer does not
know the book’s location a priori), the uncertainty is a

result of imprecise specification of the likely target
location. This type of position uncertainty increases
with the number of potential target locations and is
called extrinsic position uncertainty. However, even
when the observer is familiar with the bookshelf and
knows the order of its books, she or he might still have
a hard time localizing the book in the visual periphery.
This uncertainty is a result of the limitations intrinsic to
the visual system, such as the limitations of peripheral
vision and visual memory, and it is called intrinsic
position uncertainty.

Regardless of whether it is extrinsic or intrinsic,
position uncertainty impairs performance for detecting,
discriminating, and localizing stimuli. This is indicated
by decreases in detection and localization accuracy
(Burgess & Ghandeharian, 1984; Eckstein, Thomas,
Palmer, & Shimozaki, 2000), by increases in detection
thresholds (Cohn & Wardlaw, 1985; Palmer, Verghese,
& Pavel, 2000), and by increases in search times (Egeth,
Atkinson, Gilmore, & Marcus, 1973; Treisman &
Gelade, 1980). Although research on the effects of
position uncertainty has typically focused on extrinsic
sources of uncertainty (e.g., Bochud, Abbey, &
Eckstein, 2004; Burgess & Ghandeharian, 1984;
Swensson & Judy, 1981), a few studies have explicitly
focused on intrinsic sources (e.g., Michel & Geisler,
2011; Pelli, 1985; Tanner, 1961). Evidence from these
studies, and from studies of visual crowding (e.g.,
Bouma, 1970; Levi, 2008; Pelli et al., 2007; Pelli,
Palomares, & Majaj, 2004) suggests that the ability to
identify and localize features declines systematically in
the periphery. Indeed, position uncertainty has been
repeatedly implicated as a primary contributor to
crowding (Krumhansl & Thomas, 1977; Popple & Levi,
2005; Wolford, 1975). For example, similar to crowding
(Bouma, 1970; Levi, 2008; Levi, Hariharan, & Klein,
2002), intrinsic position uncertainty also increases
approximately linearly with eccentricity (Michel &
Geisler, 2011). Moreover, the eccentricity-dependent
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effects of position uncertainty seem to persist in search
tasks requiring eye movements (i.e., overt search tasks;
Semizer & Michel, 2017).

As an inherent property of the observer’s visual
system, intrinsic position uncertainty cannot be exper-
imentally controlled. However, its effect on perfor-
mance can be observed by manipulating the visual
environment. In a recent study, Semizer and Michel
(2017) introduced an experimental technique that
modulates the effects of intrinsic uncertainty indepen-
dently of extrinsic uncertainty by manipulating the
distribution of clutter in synthetic noise displays. Using
this technique, the authors showed that intrinsic
position uncertainty substantially limits overt search
performance and that its effects are especially evident
when the amount of extrinsic uncertainty is controlled.
Does this result generalize to real-world searches?

In many ways, synthetic visual stimuli have been
incredibly useful for vision research. Synthetic stimuli
provide researchers with a great deal of flexibility and
control, enabling them to manipulate individual
stimulus features and to determine how these contrib-
ute to performance in a variety of tasks. In visual
search, for example, measuring performance in syn-
thetic search displays has allowed researchers to
discover how observers use information about periph-
eral target visibility to select fixations (Geisler, Perry, &
Najemnik, 2006; Najemnik & Geisler, 2005; Najemnik
& Geisler, 2008; Michel & Geisler, 2009; Verghese,
2012; Zhang & Eckstein, 2010), how intrinsic position
uncertainty and clutter in the periphery degrade
performance (Michel & Geisler, 2011; Rosenholtz,
Huang, Raj, Balas, & Ilie, 2012; Semizer & Michel,
2017), how the template for known search targets is
structured (Eckstein, Beutter, Pham, Shimozaki, &
Stone, 2007), and how observers integrate information
about the target across fixations (Caspi, Beutter, &
Eckstein, 2004; Kleene & Michel, 2018), all while
controlling extraneous properties of the search display
(e.g., spectral spatial frequency statistics, environmen-
tal contingencies, target location probabilities, etc.) in
ways that would be difficult or impossible with natural
scenes. However, their highly controlled nature means
that synthetic displays may provide only limited insight
into how observers search in naturalistic settings.

For example, the search targets used in synthetic
displays typically exhibit very little variability across
trials, and observers are therefore assumed to represent
them with little uncertainty. In contrast, the targets of
natural searches typically exhibit many sources of
variability. Objects in natural scenes appear in various
positions and orientations, occlude one another, and
change appearance depending on the lighting condi-
tions. Moreover, individual exemplars may vary
considerably within a natural object category. These
sources of variability introduce additional uncertainty

that might overwhelm any effects of intrinsic uncer-
tainty on search performance. Thus, it is important to
verify that the factors that explain search performance
in synthetic displays generalize to account for searches
in more naturalistic displays.

One of the major challenges associated with natu-
ralistic tasks in the context of visual search is to
quantify the amount of clutter in natural images.
Unlike in artificial displays, clutter cannot be directly
manipulated in natural images. However, a variety of
models have been proposed to quantify scene clutter.
These include edge density (Mack & Oliva, 2004),
feature congestion (Rosenholtz, Li, Mansfield, & Jin,
2005; Rosenholtz, Li, & Nakano, 2007), subband
entropy (Rosenholtz et al., 2007), the scale invariant
clutter measure (Bravo & Farid, 2008), the color-
clustering clutter (C3) model (Lohrenz, Trafton, Beck,
& Gendron, 2009), and the proto-object model (Yu,
Samaras, & Zelinsky, 2014). Using these measures,
several studies have shown that clutter degrades
performance for search in various types of naturalistic
displays including geographic maps (Rosenholtz et al.,
2007; Lohrenz et al., 2009), quasi-realistic scenes
(Neider & Zelinsky, 2011), natural scenes (Henderson,
Chanceaux, & Smith, 2009, but also see Asher,
Tolhurst, Troscianko, & Gilchrist, 2013), images
displaying contents of bags (Bravo & Farid, 2008), and
photo collages of objects (Bravo & Farid, 2004; Bravo
& Farid, 2008).

However, these findings confound different potential
sources of position uncertainty. As a scene becomes
increasingly cluttered, the number of possible target
locations (i.e., set size) also increases. This increase in
set size augments the position uncertainty because of
extrinsic sources. At the same time, because of intrinsic
sources of position uncertainty, the ability to exclude
irrelevant signals in the periphery decreases in highly
cluttered scenes (Michel & Geisler, 2011; Semizer &
Michel, 2017). These two concurrent effects of clutter
make it challenging to separate the contributions of
extrinsic versus intrinsic uncertainty on performance in
highly cluttered images.

The goal of the current study was to separate out the
contributions of intrinsic versus extrinsic sources of
position uncertainty and to characterize them in a
naturalistic search task that requires searching natural
images for categorical targets. We approached this goal
by controlling and manipulating set size independently
of clutter, as in Semizer and Michel (2017). Instead of
imposing synthetic clutter, we used an existing clutter
measure (Bravo & Farid, 2008), chosen for its efficiency
and its demonstrated correlation with search perfor-
mance, to quantify the existing clutter in a set of
natural images. The images were sorted into high- and
low-clutter conditions based on this clutter measure.
The ‘‘relevant set size’’ (Palmer, 1994; Palmer, 1995),
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which governed the extrinsic position uncertainty, was
varied independently by manipulating the number and
positions of cues indicating potential target locations.
Within each fixed set size condition, search times
increased as a function of increasing clutter, suggesting
that clutter degrades overt search performance inde-
pendently of set size.

Methods

Observers

A total of 25 observers participated in the study. One
of the observers was an author; the remaining observers
were naı̈ve to the purpose of the experiment and
received compensation for their participation. All
observers had normal or corrected-to-normal vision.

Apparatus

Stimuli were presented on a 22-in. Philips 202P4
CRT monitor at 100 Hz. The resolution was set to
1,2803 1,024 pixels. Observers were seated 70 cm away
from the display so that the display subtended 15.88 3
21.18 of visual angle. The stimuli displays were
programmed using MATLAB software (MathWorks,
Natick, MA) and the Psychophysics Toolbox exten-
sions (Brainard, 1997). Observers’ eye movement
signals were monitored and recorded using an Eyelink
1000 infrared eye tracker (SR Research, Kanata,
Ontario, Canada) at 1000 Hz. Head position was
stabilized using a forehead and chin rest.

Stimuli

Images of natural scenes often contain contextual
information that effectively reduces the search set size
(Castelhano & Heaven, 2011; Neider & Zelinsky, 2006;
Oliva & Torralba, 2006; Torralba, Oliva, Castelhano,
& Henderson, 2006). To minimize this contextual
information, we chose a set of images displaying the
contents of bags in arbitrary arrangements (see Figure
1). These images were retrieved from the ‘‘What’s in
your bag?’’ group on Flickr.1 We selected five of the
most common objects in the image set (cellphones,
glasses, iPods, keys, and pens/pencils) to serve as the
categorical search targets. If a target object was present
in the image, it was either present as a single instance
or, in the case of collective objects, as a single group of
instances in close proximity (e.g., keys attached to a
keychain). There was never more than one instance or
group of the target object present in the image.

Creating the image data set

The image data set was created by processing raw
images in four separate stages: initial filtering, trans-
formation, labeling, and selection. Each stage is
described in detail next.
Initial filtering stage: Images were downloaded and
subsequently checked for duplicates and quality (e.g.,
blurs, artifacts, etc.). We avoided scaling the size of
small images up to preserve image quality. Therefore,
images whose maximum dimension was smaller than
the height of the stimulus window (1,024 pixels) were
excluded.
Transformation stage: The clutter measure used in our
experiment is sensitive to the image size (see the
Measuring Clutter section). To control for any
potential effects of image size on quantifying clutter, we
resized the minimum dimension to 1,024 pixels.

Next, we considered the variability in color across
images. To control for the effects of color on
performance, colored images were converted to gray-
scale intensity images by removing the hue and
saturation information while keeping the luminance
information. RGB values were converted to gray-scale
values by computing a weighted sum of the channels
using the intensity transformation:

I ¼ 0:299Rþ 0:587Gþ 0:114B; ð1Þ
where I represents the gray-scale intensity and R, G,
and B corresponds to red, blue, and green channels,
respectively.2 Also, to control the variability in
luminance and contrast levels across images, the
average luminance of each image was set to 40 cd/m2,
and its contrast level (root mean square) was adjusted
to 0.4. Then, the clutter was computed for each image
(see the Measuring Clutter section). The distribution of
clutter was similar across search images containing
different target object categories (see Figure 2, left
panel).
Labeling stage: Images were annotated by labeling the
category of potential target objects present in them.
Then, target locations were marked by drawing
circumscribing polygons around the target objects. The
vertices of these polygons were recorded. At the end of
this stage, each image was associated with an annota-
tion consisting of a list of target objects within the
image, a list of vertices describing the circumscribing
polygon for each target object, and the clutter value for
the image.
Selection stage: For each of five target categories, 800
test images were selected. The target object was present
in only half of these images. Test images were chosen
based on the following criteria.

First, to label images as high and low clutter, we
computed the median of the clutter distribution.
Images with clutter values higher than the median were
marked as high clutter, whereas images with clutter
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values lower than the median were marked as low
clutter.

Next, we expected that target size might affect search
performance in target present images. To control for
any size effects, we first measured the size of each target
object by computing the area of its circumscribing
polygon. Target size varied depending on the target
category (see Figure 2, right panel). For example, on
average, cellphones were larger than keys. To limit the
effects of unusually sized objects, we restricted the
variability in target size by including images only if
t 2 1=4m; 4m½ �, where t is the target size and m is the
median target size.

A final inclusion criterion considered the variants of
targets. If we suspected that observers might not be
familiar with a particular variant of target object,
images displaying that variant were not selected. For
example, in the case of cellphones, images did not
include any flip phones. Similarly, in the case of iPods,
only images with iPods with a particular shape, a
rectangular screen at the top, and a circular area at the
bottom were included. Further, images with objects
that looked highly similar to targets were also excluded.
For example, images containing an iPod touch (which
might look like an iPhone to the observer) were

excluded. Similarly, in the case of pens, we excluded
images that included makeup pencils.

At the end of this process, 800 images were selected
for each target category. Four hundred test images
were selected for the target-present trials by prioritizing
the amount of clutter and checking for the criteria
listed above, and another 400 images without the target
object were selected for the target-absent trials.

Preparing the search stimuli

For their presentation in the search task, individual
images in each of the two clutter conditions were
randomly assigned to either the low (5 locations) or
high (13 locations) set size conditions. Potential target
locations were marked by small circular cues overlaid
on the image. To minimize uncertainty about cue
locations, we used large cues (0.258 in diameter) that
were red on a gray-scale image; placed the cues on a
regular hexagonal grid, with spacings of 8.08 and 5.98
for set sizes 5 and 13, respectively; and made them
continuously visible on the screen across each block.
The average distance of the cue locations from the
origin was set to be two-thirds of the radius of the
stimulus circle. Images were shifted and rotated so that

Figure 1. Example displays for the low-clutter (left) and the high-clutter (right) conditions with keys as the search target. Keys are

located near the center in both images. Images are retrieved from the ‘‘What’s in your bag?’’ group on https://www.flickr.com.

Figure 2. Distribution of clutter values (left) and target size (right) for each target category.
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only one of these cues appeared within the circum-
scribing polygon associated with the correct target
location. Images were presented in a circular region, 248
in diameter. This region was chosen with the constraint
that it contained the target object. Finally, the area
around the circular region was set to uniform gray. The
final form of images used as stimuli in the search task is
shown in Figure 3.

Measuring clutter

We quantified image clutter using a modified version
of the clutter measure described in Bravo and Farid
(2008). We chose this clutter measure because it has
been shown to successfully predict search times in a
similar set of images. In addition, this measure is
computationally efficient and scale invariant. Briefly,
this measure estimates the amount of clutter in an
image as a function of the relationship between the
number of ‘‘segments’’ in an image and the scale of
segmentation. The details of the segmentation proce-
dure and our implementation of the clutter measure are
described below.
Segmentation algorithm: To count the number of
segments in each image, we used the graph-based
segmentation algorithm introduced by Felzenszwalb
and Huttenlocher (2004). This algorithm segments the
image by considering the variability of nearby regions.
In particular, it draws boundaries between regions
based on pairwise comparisons of the intensities within
and across regions. The threshold for drawing these
boundaries is controlled by a scale parameter k. Larger

k leads the algorithm to favor larger regions and results
in a smaller number of segments. The algorithm
produces perceptually reasonable segments (e.g., see
Figure 4), and it runs at a high speed in practice.

Our search stimuli consisted of different cropped
sections of the images for different target categories.
We wanted the clutter estimates to be robust to minor
changes of the position in the image. To get more stable
estimates of clutter, we created random sections from
the images, counted segments for each section at
multiple scales, and then computed the geometric mean
of segment counts across sections at each scale. At the
end of this process, each image was associated with a
segment count for each scale.
Clutter measure: We measured the clutter in each image
by characterizing the relationship between the scale of
segmentation k and the number of segments for that
scale y(k). We determined this relationship empirically
by varying the scale parameter across a range of values,
applying the segmentation algorithm, and counting the
resulting number of segments. Figure 4 shows examples
of segmented images and the number of segments at
several scales of segmentation. For any given image,
the number of segments is log-linearly related to the
scale of segmentation, such that

ln yðkÞ ¼ aþ b ln k; ð2Þ
where ln represents the natural logarithm.

The slope of this relationship is approximately
constant (b ’ –0.69), but the intercept a varies across
images. In particular, for any setting of the scale
parameter, highly cluttered images tend to have more

Figure 3. Search task sequence for a trial with keys as the search target. The small red cue markers, which were continuously visible,

represent the potential target locations (N ¼ 13). The keys are located within the top left quadrant of the image.
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segments than the minimally cluttered images. There-
fore, we used the intercept of each image to quantify its
clutter.

To obtain robust estimates of these log-linear
relationships for each image, we (a) randomly sampled
ten 1,024 3 1,024 sections of the image, (b) computed
the segment counts for each of these sections across a
range of scales (k � {90, 128, 181, 256, 362, 512, 724,
1024, 1448, 2048, 2896, 4096}), and (c) computed the
intercept of the log-linear fit using a least-squares
procedure. The slope was computed as the average
least-squares slope for all of the images in the data set
(N ¼ 4,953), and the intercepts for individual images
were fitted with this average slope held constant.

Our implementation of this clutter metric differed
from the clutter metric on which it is based (Bravo &
Farid, 2008) in two ways: First, we evaluated the least-
squares fit in log units, in which the power law
functions are linear. This was done to make the model
residuals more homoscedastic and thereby make the
fitting more robust to outliers. Second, we sampled
multiple sections from each image before segmenting
them and computed the fit using the set of segment
counts obtained for all of these sections. This resulted
in fits that were robust to the small changes in cropping
boundaries that occurred when the images were
repositioned to align the target location with the grid of
cue positions.

To evaluate the generalizability/robustness of our
clutter measurements, we also quantified clutter using
alternative clutter measures including edge density
(Mack & Oliva, 2004), feature congestion (Rosenholtz
et al., 2005; Rosenholtz et al., 2007), and subband
entropy (Rosenholtz et al., 2007) for the images used in
our experiment. The clutter measures were all signifi-
cantly correlated (see Table 1), suggesting that the
particular choice of clutter metric is not important.

The code for implementation of the segmentation
algorithm is made publicly available by its authors. A
MATLAB implementation of the clutter measure using
this algorithm as described above can be downloaded

from our lab Github page (https://github.com/
mmmlab/clutter_metric_code).

Procedure

The design of the experiment was 5 (target object
category: cellphones, glasses, iPods, keys, or pens/
pencils) 3 2 (relevant set size: 5 or 13) 3 2 (clutter level:
low or high)32 (target presence: target present or target
absent), with one between-subjects variable (target
object category) and three within-subjects variables
(relevant set size, clutter level, and target presence). At
the start of the search experiment, observers were
randomly assigned to one of five search target categories
(cellphones, glasses, iPods, keys, or pens/pencils).
Observers were instructed to detect and locate the target
object within an image as quickly and accurately as
possible. In addition, they were told that if the search
target was present in an image, there was only one single
item or a group of items in close proximity from the
search category, and the item was visible.

Before the start of each trial, observers fixated a
point at the center of the display while a set of circular
cues indicated the potential target locations (see Figure
3). Observers began the trial by pressing a start key.
After the trial was initiated, the search display
appeared and observers freely searched for the target.
Observers were allowed 3 s to search. After either 3 s

Figure 4. Example of segmented images of a low-clutter (top) and high-clutter (bottom) image at five of the 12 possible values of the

scale parameter (k � [90, 4096]). Color is used only to show the segmented regions in the image. The plot on the right shows the

number of segments as a function of the scale parameter for each image. Points represent the raw number of segments, whereas the

lines represent the log-linear fits.

Segmentation

Edge

density

Feature

congestion

Subband

entropy

Segmentation —

Edge density 0.67 —

Feature

congestion

0.64 0.65 —

Subband entropy 0.57 0.70 0.60 —

Table 1. Pearson correlation coefficients among clutter
measures. Notes: All p , 0.001.

Journal of Vision (2019) 19(4):1, 1–16 Semizer & Michel 6

Downloaded from jov.arvojournals.org on 04/01/2019

https://github.com/mmmlab/clutter_metric_code
https://github.com/mmmlab/clutter_metric_code


had elapsed or the observer pressed a key to complete
the search early, the search image disappeared while the
set of circular cues indicating the potential target
locations remained on the screen. An additional cue
appeared at a random location 18 outside the search
region. Observers were instructed to make a localiza-
tion decision. They fixated either the cue corresponding
to the perceived location of the target (if target was
present) or the additional cue (if target was absent).
The cue corresponding to the current fixation was
highlighted in real time to ensure that observers knew
which locations they were selecting. Observers could
correct their gaze if the wrong location was highlighted.
When they were satisfied with their selections, observ-
ers logged their responses with a keypress.

The amount of time spent inspecting each image was
recorded as the search time and was the primary measure
of performance. In target-present trials, a response was
registered as ‘‘correct’’ only if the selected cue corre-
sponded to the target location. In the target-absent trials,
a response was registered as ‘‘correct’’ only if the absent
cue location was selected. All other responses were
registered as errors. Observers received auditory feed-
back indicating the accuracy of their responses.

Trials were blocked by the relevant set size. Each
block consisted of 50 experimental trials. At the start of
each block, observers completed a 13-point calibration
routine covering the central 228 of gaze angle. The
calibration was repeated until the average test-retest
calibration error across gaze points fell below 0.258.
The calibration routine could be repeated if necessary
during a block. If a blink was detected during the
search phase of the trial (when the image was present
on the screen), the trial was aborted, and the observer
was notified. Data from aborted trials were discarded,
but the image from the discarded trial was repeated
later in the experiment. Observers very rarely broke
fixation, so fewer than 1% of trials were aborted.

Observers completed the study in two 1-hr sessions
on separate days. Each session contained eight blocks,
resulting in a total of 800 trials. The block order was
randomized across sessions and observers.

Observers were trained and refamiliarized with the
task by completing eight practice trials at the start of
the experiment and a single practice trial at the start of
each block. Data from the practice trials were excluded
from the analysis.

Results

Search times

Figure 5 shows average search times in the target-
present and target-absent trials. Each faint line

represents data from five observers searching for one
type of target (shapes) in either high-clutter (red lines)
or low-clutter (blue lines) condition as a function of
relevant set size. Each heavy line represents the average
search times across target categories. Two main trends
are evident: (a) search times tend to increase as the
relevant set size increases and (b) search times tend to
increase as the amount of clutter increases.

Search times were analyzed by conducting a 5
(target object category: cellphones, glasses, iPods,
keys, or pens/pencils)32 (relevant set size: 5 or 13)32
(clutter level: low or high) 3 2 (target presence: target
present or target absent) mixed design analysis of
variance (ANOVA), with one between-subjects vari-
able (target object category) and three within-subjects
variables (relevant set size, clutter level, and target
presence).

The ANOVA revealed main effects of clutter level,
F(1, 20) ¼ 260.37, p , 0.001; of relevant set size, F(1,
20)¼ 48.69, p , 0.001; and of target presence, F(1, 20)
¼ 173.69, p , 0.001. In particular, average search times
were longer in the high-clutter condition (M¼ 1.37, SE
¼ 0.01) than in the low-clutter condition (M¼ 1.18, SE
¼ 0.01), suggesting that clutter degrades search
performance. Search times were also longer in the set
size 13 condition (M¼ 1.37, SE¼ 0.01) than in the set
size 5 condition (M¼ 1.19, SE¼ 0.01), confirming our
manipulation of set size. Finally, target-absent trials
resulted in longer search times (M ¼ 1.55, SE ¼ 0.01)
than the target-present trials (M¼1.00, SE¼0.01). The
main effect of target category did not reach signifi-
cance, F , 1, n.s.

Our analysis also revealed several significant inter-
action effects. There was a significant clutter level 3
relevant set size interaction, F(1, 20)¼ 4.93, p¼ 0.036,
which suggests that the effect of clutter tends to be
larger for larger set size. The clutter level 3 target
category interaction was also significant, F(4, 20) ¼
5.29, p¼ 0.005, suggesting that the effect of clutter was
larger for some target categories than others. In
addition, the clutter level 3 target presence interaction
reached significance, F(1, 20)¼ 48.65, p , 0.001,
suggesting larger effects of clutter in the target-absent
trials compared with the target-present trials. More-
over, set size 3 target presence interaction was
significant, F(1, 20) ¼ 11.01, p¼ 0.003, which suggests
larger set size effects in the target-absent trials
compared with the target-present trials.

Fixation distributions

As a further check on our manipulation of set size,
we examined observers’ fixation distributions during
search. If observers make use of the target location
information provided by the cues when planning their
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fixations, they should be more likely to fixate the cued
locations than other locations in the display. Figure 6
shows the fixation distributions for each of the set
size conditions, aggregated across all observers and
trials, with the first and last fixations excluded. We
excluded the first fixation from the analysis because
observers always started the search by fixating at the
center of the screen, and we excluded the last fixation
from the analysis to avoid biasing the fixation
distributions toward the target locations (i.e., because
observers typically completed the search by fixating
the target location). Our analysis of fixation distri-
butions shows that observers indeed use cue location
information when selecting their fixation locations,
confirming the effectiveness of our set size manipu-
lation.

Search target sizes

We also examined how search time changed as a
function of target size. Although we restricted the size
of the targets to a limited range, there was still some
degree of variability. Each target’s size was quantified
using either the area of its circumscribing polygon or
the length of the longest axis of this polygon. To
remedy the curvilinear relationship observed between
the target area and the search times, the areas were
transformed by taking their square root, which resulted
in a more linear relationship. Figure 7 shows that (a)
search times tend to decrease as the search target gets
larger in size and (b) some targets are larger, on
average, than others. The analysis showed that search
times decrease significantly as target size increases, both
when the size was measured as the area (r¼ –0.29, p ,

Figure 5. Average search times as a function of relevant set size in the target-present trials (left) and in the target-absent trials (right).

Each combination of line and symbols represents data from five observers searching for one type of target (shapes) in either the high-

clutter (red lines) or low-clutter (blue lines) condition. Average search times across target categories are represented by the heavy

lines.

Figure 6. Aggregated fixation distributions across all of the observers, for set size 5 (left) and for set size 13 (right). The first and final

fixations were excluded from the analysis.
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0.001) and when it was measured as the length of
longest axis (r¼ –0.35, p , 0.001). These results suggest
that target size may be one of the factors driving
differences in search performance among target cate-
gories.

Search target categories

Our stimulus set contained some common images
across different target categories. That is, in some cases,
different observers searched for different targets in the
same image. These cases gave us the ability to
dissociate effects of the search image from those of the
search target and to directly examine the effect of target
category on search performance. Figure 8 shows the
average search times while searching for different
targets in the same image. For example, the first plot
shows the search time while looking for a cellphone
compared with the search time while looking for the
other targets in the same image. If the search
performance was determined only by the amount of
clutter or the relevant set size, then all points would line
up on the diagonal. However, these results show that
some targets were more difficult to find than others.
For example, on average, observers seem to be faster at
locating cellphones than other targets. We discuss
potential implications of these results in the Discussion
section.

Error rates

Error rates were defined as the proportion of trials in
which observers did not fixate the correct cue location
(see the Procedure section). The probability of choosing
any location other than the correct location (i.e., the

baseline error rate) was computed as 0.83 and 0.93 for
set sizes of 5 and 13, respectively. Table 2 shows error
rates across conditions. In general, error rates were well
below baseline rates, suggesting that observers were
extremely accurate in their judgments.

Discussion

The purpose of the current study was to determine
how clutter affects the search for categorical targets in
real-world scenes. In particular, we sought to disen-
tangle the effects of extrinsic position uncertainty (i.e.,
search set size) from those due, through the modulating
effect of clutter, to intrinsic position uncertainty
(Semizer & Michel, 2017). Our results exhibited several
trends:

First, search times increased significantly as a
function of increasing clutter. This pattern was evident
across target categories, but the effect was larger for
some targets than others. Second, search times in-
creased significantly as the number of possible target
locations increased, revealing the classic set size effect.
This finding provided evidence that our manipulation
of extrinsic uncertainty, via the relevant set size, was
successful. Third, when all other manipulated factors
(i.e., clutter level and set size) were fixed, search times
changed as a function of target category. Finally,
search times decreased significantly as a function of
target size, both when the size was measured as the area
of the circumscribing polygon and when it was
measured as the length of the longest axis of this
polygon. We discuss potential implications of these
findings below.

Figure 7. Search times as a function of target size represented by the square root of the area (left panel) or the longest axis (right

panel) of its bounding polygon. Each gray dot represents the average search time across five observers for a particular target in an

image. Shaped markers represent the average size for each target category. Blue lines represent the least-squares linear fits.

Journal of Vision (2019) 19(4):1, 1–16 Semizer & Michel 9

Downloaded from jov.arvojournals.org on 04/01/2019



Clutter-specific effects

Several studies have shown that clutter degrades
search performance in naturalistic stimuli (e.g., Bravo
& Farid, 2004; Bravo & Farid, 2008; Henderson et al.,
2009; Neider & Zelinsky, 2011; Rosenholtz et al., 2007).
However, there are various ways in which clutter can
lead to the observed performance impairments. For
example, clutter has been used as a proxy for set size in
natural scenes because, as scene clutter increases, the
(implicit) number of potential target locations also
tends to increase (Rosenholtz et al., 2005; Rosenholtz et
al., 2007). In addition, clutter can force observers to
consider features at irrelevant locations during search,
exacerbating the effects of intrinsic position uncertainty
(Michel & Geisler, 2011; Semizer & Michel, 2017). As a

result, localizing the source of peripherally perceived
stimuli becomes more difficult, which degrades search
performance. Finally, clutter can make search more
difficult by obscuring search targets. Adding clutter to
real-world scenes increases the probability that objects
will partially or completely occlude one another. In the
current study, we controlled for set size and for
occlusions of the search target to isolate those effects of
clutter that are due to intrinsic position uncertainty.

The results of the current study, obtained using real-
world images, are in broad agreement with those of a
related study that showed how clutter degrades search
performance in synthetic noise displays (Semizer &
Michel, 2017). However, the results of the current study
differ in one notable respect. Semizer and Michel (2017)
reported that the effect of extrinsic position uncertainty

Figure 8. Average search times for different targets in common images. Each panel compares search time for a particular target

category (on the x-axis) to search time for other targets (on the y-axis) in the same image. Each point represents average search times

across all images that contained the indicated pair of targets. Error bars indicate standard error.

Clutter level Relevant set size

Target category

AverageCellphone Glasses iPod Key Pen

Low 5 0.04 0.03 0.09 0.03 0.06 0.05

13 0.05 0.06 0.11 0.04 0.09 0.07

High 5 0.03 0.05 0.09 0.06 0.09 0.06

13 0.05 0.07 0.12 0.09 0.11 0.09

Table 2. Error rates across conditions.
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diminished at larger set sizes when the searcher was
limited by intrinsic position uncertainty. As a result,
search performance was similar across cluttered and
uncluttered conditions when the relevant set size was
large. However, our results showed that search
performance was worse in the high-clutter condition
than in the low-clutter condition regardless of the
relevant set size. This difference might be due to either
of two reasons: First, the images in our experiment
were far less cluttered than the synthetic displays
created in the lab. When measured using the same
clutter metric, the synthetic stimuli from Semizer and
Michel (2017) yielded clutter values of about a ¼ 4 3
108, which was several orders of magnitude larger than
the clutter values measured for our images (see Figure
2). Second, the relevant set sizes used in our study were
much smaller than those in Semizer and Michel (2017).
In the current study, the set sizes consisted of either five
or 13, whereas the set sizes of Semizer and Michel
(2017) ranged from a minimum of 37 to a maximum of
817 potential target locations. Indeed, our results are
completely consistent with those of Semizer and Michel
(2017) when we consider only the smaller set sizes used
in that study.

Characterizing set size

In many traditional search experiments, set size is
defined as the number of items in a search display (see
Wolfe, 1998, for a review). This type of set size is also
called the ‘‘display set size.’’ A task-relevant subset of
these items form the ‘‘relevant set size,’’ which can be
manipulated independently of the display set size by
cuing only the locations that might contain the target
(Palmer, 1994; Palmer, 1995). Palmer (1994) introduced
this distinction to characterize searches of displays
comprising a small number of elements on a uniform
background. However, the notion of relevant set size is
especially critical in searches for which the number of
elements is either very large or undefined. For example,
researchers have used this method to define and
manipulate set sizes for searches in synthetic noise
displays (Burgess & Ghandeharian, 1984; Eckstein et
al., 2007; Manjeshwar & Wilson, 2001; Najemnik &
Geisler, 2005; Semizer & Michel, 2017; Swensson &
Judy, 1981) and in structured medical images (Bochud
et al., 2004; Eckstein & Whiting, 1996). In the current
study, we likewise used Palmer’s (1994) method, cueing
potential target locations to define the relevant set size
in natural scenes.

In the context of natural scenes, there are several
ways in which the effective set size might be made
functionally smaller than the (nominal) relevant set
size. First, if observers consider only the locations that
contain ‘‘stuff’’ (i.e., objects, items, or feature elements)

and preferentially fixate only cues that fall on these
locations, this would reduce the relevant set size.
However, in the context of natural scenes, character-
izing what ‘‘stuff’’ entails is problematic because
labeling or counting every single item in a scene is an
ill-defined problem. In particular, identifying what
constitutes an object or a background is not clear
(Neider & Zelinsky, 2008; Neider & Zelinsky, 2011;
Rosenholtz et al., 2007; Wolfe, Võ, Evans, & Greene,
2011), especially when texture elements are involved.
For example, in a kitchen scene, if objects are placed on
a table covered with a patterned cloth or if objects are
placed on other objects, it is not clear how to segment
the scene into object or background. Similarly, if a
scene contains a textbook (with text or illustrations on
its cover), or a patch work quilt, or an articulated
figure, it is ambiguous at what level objects should be
segmented (should individual letters be considered
objects? individual patches? individual parts?).

In the current study, if observers preferentially
fixated cues that fall on objects, we would expect this to
reduce the effective set size similarly for both clutter
conditions. Because both set sizes would be reduced,
this should not systematically influence the set size and
clutter effects observed in our experiment. To test this
relationship empirically (and based on a reviewer’s
suggestion), we characterized the ‘‘effective’’ set size by
counting the number of object cues (cues that fall on
objects) in each trial of our experiment. The proportion
of object cues were similar across low- and high-clutter
conditions, 0.72 and 0.79, respectively, suggesting no
substantial differences between the clutter conditions.
Therefore, if having cues land on the ‘‘background’’
reduced the effective set size, then it did so similarly for
both clutter conditions. Figure 9 shows search times as
a function of the number of object cues, suggesting that
the proportion of object cues is independent of clutter
in this set of stimuli.

Set size might also be effectively reduced when
targets are not distributed uniformly across cued
locations. If the appearance of the target at a subset of
the cued locations was much more probable than at
other locations, then observers might restrict their
searches to those locations within the probable subset,
effectively reducing the set size. To investigate this
possibility, we measured the likelihood that each cue
location contained a target in our stimulus set. Target
locations were well distributed across possible locations
(Figure 10), with the exception of the center location,
which was somewhat underrepresented.

To quantify the effect of this nonuniformity of the
target location distributions in reducing the relevant set
size, we computed the information entropy (Shannon,
1948) for each set size, given by
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H ¼ �
Xn

i

pilog2pi; ð3Þ

where p is the probability that a cue location contains a
target and n is the relevant set size. If the search targets
were uniformly distributed across the cued locations,
then the entropies associated with set sizes 5 and 13
would be 2.32 and 3.70 bits, respectively. The
corresponding entropies computed for the empirical
distributions measured in our experiment (Figure 10)
were 2.21 and 3.59 bits, respectively. This reduction in
entropy was small for both set sizes (approximately 5%
for set size 5 and 3% for set size 13), suggesting that any
reduction in effective set size caused by the nonuni-
formity of the target distributions should have a
negligible effect on search performance.

Target-specific effects

We used different types of target categories in the
search experiment, and this allowed us to examine how
a particular target category contributes to the effect of
clutter on search performance. Our analysis of search
times suggests that target category interacts with
clutter. But what makes a target category more or less
susceptible to clutter? Intuitively, it seems obvious that
certain features of the target (e.g., target size, color,
shape, etc.) might interact with features of clutter to
determine search performance. Imagine, for example, a
peripheral search task that requires the localization of a
target object among green distractors. If the target
object is red, then green objects will not provide
effective clutter because their features are not confus-
able with features of the target. However, if the target is
green, then the distractors should provide effective
clutter.

More generally, the similarity of the target to
features of the background might affect the suscepti-
bility to clutter. Search times are longer when targets
are similar to distractors or when distractors are
dissimilar to other distractors (Duncan & Humphrey,
1989). Also, the similarity of targets to the search
background affects search performance (Neider &
Zelinsky, 2006). For example, when the search target
and the background share a common spatial frequency
band, search becomes more difficult (Semizer &Michel,
2017). Thus, when investigating the effects of clutter on
search performance, it makes sense to expect perfor-
mance differences depending on the similarity of target
features to background features. For example, imagine
a scene of leaves. The traditional models of clutter
would consider this scene ‘‘highly cluttered’’ and
predict poor search performance in this scene regard-
less of the type of the search target. However, if the
search target, such as a cellphone, does not share a lot
of similar features with the background, then the search

Figure 9. Search times as a function of the object-cue count (i.e., the

number of cues that fall on objects) in the search image.The area of

each marker is proportional to the number of trials exhibiting the

corresponding object-cue count. Solid and dashed lines represent

the least-squares linear fits for set sizes 5 and 13, respectively.

Figure 10. Distribution of target locations for set size 5 (left) and set size 13 (right) conditions.The area of each locationmarker is proportional

to the empirical target probability for the corresponding location. The probabilities are also printed above each cue location marker.
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should be pretty easy. In fact, there are models of
clutter from the field of image optics, which quantify
clutter in electro-optical images in terms of the target-
background similarity (e.g., Chang & Zhang, 2006;
Chu, Yang, & Qian, 2012; Moore, Camp, Moyer, &
Halford, 2010; Schmieder & Weathersby, 1983; Silk,
1995; Tidhar, Reiter, Avital, & Hadar, 1994).

Another feature of the target that might affect its
susceptibility to clutter is its size. Target size has been
identified as one of the fundamental attributes in
guiding attention (Wolfe & Horowitz, 2004). As one of
the target-specific features, we measured size of the
search targets in our stimuli and examined how search
performance changes as a function of target size. The
analysis suggests that larger targets are associated with
shorter search times. This means that, within the
context our study, larger targets are easier to find.
Similarly, target size within a category might affect
susceptibility to clutter, and the strength of the
relationship between clutter and search performance
might depend on details particular to different search
targets. Revealing the nature of these specific target
features remains an open question and one that we plan
to pursue in future work.

Conclusion

Overall, our results demonstrate that increased
clutter reduces performance in searches of real-world
scenes and does so independently of set size. When
considered in the context of previous studies, Michel
and Geisler (2011) and Semizer and Michel (2017), that
explicitly modeled intrinsic position uncertainty, this
study suggests that the intrinsic position uncertainty of
peripheral vision significantly limits searches of real-
world scenes in the same way it limits searches of
synthetic scenes. Therefore, it is important to account
for these effects of intrinsic position uncertainty when
evaluating and modeling performance in search tasks.

Keywords: clutter, visual search, natural images, set
size, intrinsic position uncertainty
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Footnotes

1 A subset of images from this group was also used
in a search task by Bravo and Farid (2008).

2 The weights used in conversion of RGB values to
gray-scale values were based on ITU-R Recommen-
dation BT.601-7 standard for color video encoding.
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